Dangling bonds and magnetism of grain boundaries in graphene
نویسندگان
چکیده
منابع مشابه
Magnetization due to localized states on graphene grain boundary
Magnetism in graphene has been found to originate from various defects, e.g., vacancy, edge formation, add-atoms etc. Here, we discuss about an alternate route of achieving magnetism in graphene via grain boundary. During chemical vapor deposition of graphene, several graphene nucleation centers grow independently and face themselves with unusual bonding environment, giving rise to the formatio...
متن کاملDual origin of defect magnetism in graphene and its reversible switching by molecular doping.
Control of magnetism by applied voltage is desirable for spintronics applications. Finding a suitable material remains an elusive goal, with only a few candidates found so far. Graphene is one of them and attracts interest because of its weak spin-orbit interaction, the ability to control electronic properties by the electric field effect and the possibility to introduce paramagnetic centres su...
متن کاملThursday MM 37 : Nanomaterials II
We investigate magnetic properties of defective graphene, using a modified Hubbard model of the pi electrons of the carbon atoms. Spin interaction between pi elections and dangling sp2 bond has been taken into consideration. Mean field approximation is employed in our calculation, in order to deal with very large fragment of graphene. Magnetism of graphene with different types of defects will b...
متن کاملGraphene Edge Spins: Spintronics and Magnetism in Graphene Nanomeshes
We have fabricated low-defect graphene nanomeshes (GNMs) by using a non-lithographic method and observed large-amplitude ferromagnetism even at room temperature, only when pore edges of the GNMs were hydrogenterminated. The observed correlation between the inter-pore spacing and magnetism and also magnetic force microscope observations suggest that it is attributed to polarzied electron spins l...
متن کاملEffect of Defects on Mechanical Properties of Graphene under Shear Loading Using Molecular Dynamic Simulation
Graphene sheet including single vacancy, double vacancy and Stone-Wales with armchair and zigzag structure was simulated using molecular dynamics simulation. The effect of defects on shear’s modulus, shear strength and fracture strain was investigated. Results showed that these shear properties reduce when the degrees of all kinds of defects increase. The dangling bond in SV and DV defected gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017